

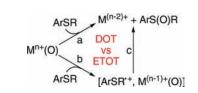
Metal Ion Effect on the Switch of Mechanism from Direct Oxygen Transfer to Metal Ion-Coupled Electron Transfer in the Sulfoxidation of Thioanisoles by a Non-Heme Iron(IV)—Oxo Complex

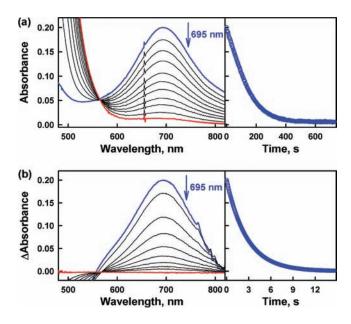
Jiyun Park,⁺ Yuma Morimoto,[‡] Yong-Min Lee,[†] Wonwoo Nam,^{*,†} and Shunichi Fukuzumi^{*,†,‡}

⁺Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

^{*}Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Supporting Information


ABSTRACT: The mechanism of sulfoxidation of thioaniosoles by a non-heme iron(IV)—oxo complex is switched from direct oxygen transfer to metal ion-coupled electron transfer by the presence of Sc^{3+} . The switch in the sulfoxidation mechanism is dependent on the one-electron oxidation potentials of thioanisoles. The rate of sulfoxidation is accelerated as much as 10^2 -fold by the addition of Sc^{3+} .


Oxygen atom transfer (OAT) from high-valent metal—oxo species to organic or inorganic substrates is ubiquitous in biological and catalytic oxygenation processes.¹ Extensive efforts have been devoted to clarifying the mechanisms of OAT reactions of iron(IV)—oxo complexes bearing heme and non-heme ligands as chemical models of cytochromes P450 (CYP 450) and non-heme iron oxygenases, respectively.² In sulfoxidation reactions, two plausible mechanisms for the oxidation of sulfides by high-valent metal—oxo complexes have been proposed:³⁻⁵ direct oxygen transfer (DOT) and electron transfer followed by oxygen transfer (ETOT). As shown in Scheme 1, sulfoxide [ArS(O)R] is formed either by DOT from a metal—oxo species [$M^{n+}(O)$] to sulfide (ArSR) (i.e., DOT mechanism, pathway a) or by electron transfer from ArSR to $M^{n+}(O)$ followed by OAT from $M^{(n-1)+}(O)$ to the radical cation (ArSR^{•+}) (i.e., ETOT mechanism, pathways b and c).

Although the mechanisms of the oxidation of sulfides by highvalent iron—oxo intermediates of CYP 450 and model compounds have been extensively investigated experimentally and theoretically,^{4,6} non-heme iron(IV)—oxo species have rarely been explored in the mechanistic studies of sulfoxidation reactions.⁷ We report herein the remarkable effects of a metal ion (i.e., Sc^{3+}) in accelerating the reaction rate and changing the mechanism from DOT to ETOT in the sulfoxidation of thioanisoles by a non-heme iron(IV)—oxo complex, $[(N4Py)Fe^{IV}(O)]^{2+}$ [N4Py = *N*,*N*-bis(2-pyridylmethyl)-*N*-bis(2-pyridyl)methylamine].^{8–10} The role of the metal ion in the sulfoxidation reactions is discussed as well.

Sulfoxidaton of para-substituted thioanisoles by $[(N4Py)-Fe^{IV}(O)]^{2+}$ has been suggested to occur via an electrophilic reaction that quantitatively gives the corresponding methyl phenyl sulfoxides and an Fe^{II} complex as products.⁷ As shown in Figure 1a, the time course of the reaction of $[(N4Py)Fe^{IV}(O)]^{2+}$ with *p*-methylthioanisole was readily monitored by the decrease in the absorbance due to $[(N4Py)Fe^{IV}(O)]^{2+}(A_{max} = 695 \text{ nm}).^8$ In the presence of Sc(OTf)₃

Scheme 1

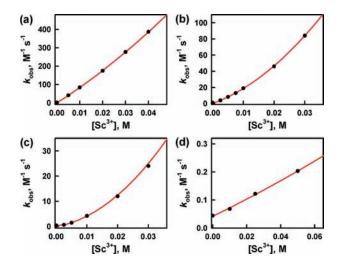


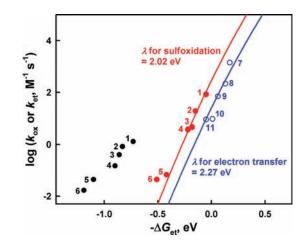
Figure 1. Changes in the visible spectrum observed in the reaction of $[(N4Py)Fe^{IV}(O)]^{2+}$ (0.50 mM) with *p*-methylthioanisole (5.0 mM) in the (a) absence and (b) presence of Sc³⁺ (10 mM) in CH₃CN at 298 K (left panels). The right panels show time courses monitored at 695 nm.

 $(OTf = CF_3SO_3^{-})$, the reaction was remarkably accelerated, and the time course was monitored using a stopped-flow spectrometer (Figure 1b).¹⁰ The rate obeyed pseudo-first-order kinetics [Figure S1 in the Supporting Information (SI)], and the pseudo-first-order rate constant increased linearly with increasing concentration of *p*-methylthioanisole (Figure S2). The second-order rate constant (k_{obs}) was obtained from the slope of the linear correlation between the

Received:January 29, 2011Published:March 16, 2011

Figure 2. Plots of k_{obs} vs Sc³⁺ concentration in the oxidation of para-X-substituted thioanisoles [X = (a) Me, (b) H, (c) Cl, (d) CN] by [(N4Py)Fe^{IV}(O)]²⁺ in MeCN at 298 K.

pseudo-first-order rate constant and the concentration of *p*-methylthioanisole.

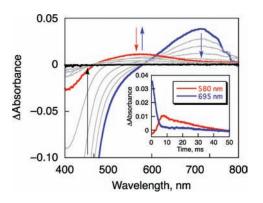

The dependence of k_{obs} on $[Sc^{3+}]$ for the reaction of $[(N4Py)Fe^{IV}(O)]^{2+}$ with *p*-methylthioanisole is shown in Figure 2a. The k_{obs} value increased, exhibiting a first-order dependence on $[Sc^{3+}]$ at low concentrations and a second-order dependence at high concentrations (eq 1):

$$k_{\rm obs} = k_0 + [\mathrm{Sc}^{3+}] (k_1 + k_2 [\mathrm{Sc}^{3+}])$$
(1)

where k_0 is the rate constant for the sulfoxidation of a para-substituted thioanisole derivative by $[(N4Py)Fe^{IV}(O)]^{2+}$ (5.0 × 10⁻⁴ M) in the absence of Sc³⁺. The k_1 and k_2 values were determined from the intercept and slope, respectively, of the linear plot of $(k_{obs} - k_0)/[Sc^{3+}]$ vs $[Sc^{3+}]$ (Figure S3). The k_{obs} value *p*-methylthioanisole in the presence of 10 mM Sc³⁺ was 8.4 × 10 M⁻¹ s⁻¹, which is ~10²-fold larger than the value determined in the absence of Sc³⁺. The dependence of the first- and second-order rate constants on the concentration of Sc³⁺ was reported previously for metal ion-coupled electron transfer from one-electron reductants to $[(N4Py)Fe^{IV}-(O)]^{2+}$, and this was ascribed to binding of one Sc³⁺ ion and two Sc³⁺ ions to $[(N4Py)Fe^{IV}(O)]^{2+}$, respectively.¹¹⁻¹⁴

Similar remarkable acceleration effects of Sc^{3+} were observed in the reactions of $[(N4Py)Fe^{IV}(O)]^{2+}$ with para-X-substituted thioanisoles with X = H, Cl, and Br (Figure 2b,c and Figure S4). When a strongly electron-withdrawing substituent (X = CN, NO₂) was employed, however, only a small acceleration was observed, as shown for X = CN in Figure 2d (see Figure S4 for X = NO₂).

The reason that the acceleration effect of Sc^{3+} is quite different depending on the substituent X can be explained by plots of log k_{obs} versus the driving force for electron transfer from the thioanisole to $[(\mathrm{N4Py})\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})]^{2+}$ $(-\Delta G_{\mathrm{et}})$ in the absence and presence of Sc^{3+} , as shown in Figure 3. The ΔG_{et} values were obtained from the difference between the one-electron oxidation potentials of the thioanisoles $(E_{\mathrm{ox}} \text{ vs SCE})^{4a}$ and the one-electron reduction potentials of $[(\mathrm{N4Py})\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})]^{2+}$ $(E_{\mathrm{red}} \text{ vs SCE})$ in the absence and presence of $\mathrm{Sc}^{3+,11,15}$ It should be noted that the E_{ox} values of the thioanisoles did not change in the presence of Sc^{3+} , whereas the E_{red} value of $[(\mathrm{N4Py})\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})]^{2+}$ was significantly shifted in the positive direction from 0.51 V vs SCE in the absence of Sc^{3+} to 1.19 V vs SCE


Figure 3. Plot of log k_{obs} for oxidation of para-X-substituted thioanisoles $[X = (1) \text{ Me}, (2) \text{ H}, (3) \text{ Cl}, (4) \text{ Br}, (5) \text{ CN}, (6) \text{ NO}_2]$ by $[(\text{N4Py}) \text{Fe}^{\text{IV}}(\text{O})]^{2+}$ in MeCN at 298 K vs the driving force for electron transfer $[-\Delta G_{\text{et}} = e(E_{\text{red}} - E_{ox})]$ from the thioanisoles to $[(\text{N4Py})\text{Fe}^{\text{IV}}(\text{O})]^{2+}$ in the absence of Sc^{3+} (black \bullet) and the presence of 10 mM Sc³⁺ (red \bullet). The blue \bigcirc show the driving-force dependence of the rate constants (log k_{et}) for electron transfer to $[(\text{N4Py})\text{Fe}^{\text{IV}}(\text{O})]^{2+}$ from the one-electron reductants (7) $[\text{Fe}^{\text{II}}(\text{Ph}_2\text{-Phen})_3]^{2+}$, (8) $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+}$, (9) $[\text{Ru}^{\text{II}}(\text{Me}_2\text{-bpy})_3]^{2+}$, (10) $[\text{Fe}^{\text{II}}(\text{Cl-phen})_3]^{2+}$, and (11) $[\text{Ru}^{\text{II}}(\text{bpy})_3]^{2+}$) in the presence of Sc³⁺ (10 mM) in MeCN at 298 K.

in the presence of 10 mM Sc^{3+, 11,15a} In the absence of Sc³⁺, $-\Delta G_{\rm et}$ is largely negative. This indicates that electron transfer from the thioanisoles to $[(N4Py)Fe^{IV}(O)]^{2+}$ is highly endergonic and therefore quite unlikely to occur. In such a case, the DOT pathway (Scheme 1a) predominates over the ETOT pathway (Scheme 1b,c), and the $k_{\rm obs}$ values are only slightly dependent on the $-\Delta G_{\rm et}$ values.

In contrast, the log k_{obs} values obtained in the presence of Sc³⁺ increased remarkably with increasing $-\Delta G_{et}$. In the case of *p*-methylthioanisole, the free-energy change for electron transfer becomes negative. In such a case, the ETOT pathway (Scheme 1b,c) becomes dominant over the DOT pathway (Scheme 1a). The dependence of log k_{obs} on the driving force for electron transfer $(-\Delta G_{et})$ in the presence of Sc³⁺ (red line in Figure 3) is remarkably parallel to that of log k_{et} for actual electron transfer from one-electron reductants to $[(N4Py)Fe^{IV}(O)]^{2+}$ (blue line in Figure 3). The driving-force dependence of both the rate constants for sulfoxidation of thioanisoles by $[(N4Py)Fe^{IV}(O)]^{2+}$ and electron transfer from one-electron reductants to $[(N4Py)Fe^{IV}(O)]^{2+}$ in the presence of 10 mM Sc³⁺ was well-fitted in light of the Marcus theory of adiabatic outer-sphere electron transfer (eq 2):

$$k_{\rm et} = Z \exp\left[-\frac{\lambda}{4} \frac{\left(1 + \Delta G_{\rm et}/\lambda\right)^2}{k_{\rm B}T}\right]$$
(2)

where Z is the collision frequency (taken as $1 \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}$), λ is the reorganization energy for electron transfer, k_{B} is the Boltzmann constant, and T is the absolute temperature.^{15,16} The best-fit λ value for electron transfer in sulfoxidation of thioanisoles was determined to be 2.02 eV, which agrees reasonably well with the λ value for electron transfer from one-electron reductants (2.27 eV).¹⁷ Such an agreement with the Marcus equation indicates that the sulfoxidation of thioanisoles by $[(N4Py)\text{Fe}^{IV}(O)]^{2+}$ in the presence of Sc³⁺ proceeds via Sc³⁺ ion-coupled electron transfer from thioanisoles to $[(N4Py)\text{Fe}^{IV}(O)]^{2+}$, which is the rate-determining step, followed

Figure 4. Difference UV–vis spectral changes in the reaction of $[(N4Py)Fe^{IV}(O)]^{2+}$ $(1.0 \times 10^{-4} \text{ M})$ with *p*-methoxythioanisole (4.0 $\times 10^{-3} \text{ M})$ in the presence of Sc³⁺ (4.0 $\times 10^{-3} \text{ M})$ in MeCN at 298 K. The inset shows the time courses monitored at 580 nm for *p*-methoxythioanisole radical cation and 695 nm for $[(N4Py)Fe^{IV}(O)]^{2+}$.

by rapid OAT from $[(N4Py)Fe^{III}(O)]^+$ to the radical cation $(ArSR^{\bullet+})$, as described in Scheme 1b,c.

When the $\Delta G_{\rm et}$ value becomes more negative than 0.4 eV, the $k_{\rm et}$ value becomes smaller than the $k_{\rm obs}$ value for DOT. Thus, the borderline between the DOT pathway (Scheme 1a) and the ETOT pathway (Scheme 1b,c) may be determined by the $E_{\rm ox}$ value of the para-X-substituted thioanisole, \sim 1.6 V vs SCE, that corresponds to *p*-cyanothioanisole.

The occurrence of electron transfer is clearly shown in the case of *p*-methoxythioanisole in the presence of Sc³⁺ (4 mM), where the driving force for electron transfer is positive ($-\Delta G_{\rm et} = 0.01 \, {\rm eV}$). As shown in Figure 4, the transient absorption band at 580 nm due to *p*-methoxythioanisole radical cation appears, accompanied by a decrease in the absorption band at 695 nm due to [(N4Py) Fe^{IV}(O)]²⁺ (for the reference spectrum of *p*-methoxyanisole radical cation, see Figure S5).¹⁸ This result clearly demonstrates that the ETOT pathway becomes dominant over the DOT pathway when the sulfoxidation by the iron(IV)–oxo complex is carried out in the presence of a metal ion (Scheme 1).

In summary, we have demonstrated that Sc^{3+} ion promotes sulfoxidation of thioanisoles significantly via Sc^{3+} ion-coupled electron transfer and that the borderline between a direct oxygen atom transfer pathway (Scheme 1a) and an electron-transfer pathway (Scheme 1b,c) is determined by the E_{ox} value of thioanisole that is ~1.6 V vs SCE. Thus, the present study provides a new and rational way to enhance the reactivity of highvalent metal—oxo species by binding of redox-inactive metal ions such as Sc^{3+} . The generality of this idea is under investigation.

ASSOCIATED CONTENT

Supporting Information. Experimental details, secondorder rate constants (Table S1), pseudo-first-order kinetics (Figure S1), second-order kinetics (Figures S2), the linear plot of $(k_{obs} - k_0)/[Sc^{3+}]$ vs $[Sc^{3+}]$ (Figure S3), the dependence of k_{obs} on $[Sc^{3+}]$ for other substrates (Figure S4), and UV-vis spectra for *p*-MeO-PhSMe^{•+} (Figure S5). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

wwnam@ewha.ac.kr; fukuzumi@chem.eng.osaka-u.ac.jp

ACKNOWLEDGMENT

The research at EWU was supported by KRF/MEST of Korea through CRI (to W.N.) and GRL (2010-00353) and WCU (R31-2008-000-10010-0) (to S.F. and W.N.). The work at OU was supported by a Grant-in-Aid (20108010) and a Global COE Program, "the Global Education and Research Center for Bio-Environmental Chemistry", from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to S.F.)

REFERENCES

(1) (a) Biological Inorganic Chemistry: Structure and Reactivity; Bertini, I., Gray, H. B., Stiefel, E. I., Valentine, J. S., Eds.; University Science Books: Sausalito, CA, 2007. (b) Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.; Kluwer Academic/Plenum Publishers: New York, 2005. (c) Biomimetic Oxidations Catalyzed by Transition Metal Complexes; Meunier, B., Ed.; Imperial College Press: London, 2000.

(2) (a) Nam, W. Acc. Chem. Res. 2007, 40, 465 and review articles in the special issue. (b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947. (c) Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. Rev. 2005, 105, 2227. (d) Espenson, J. H. Coord. Chem. Rev. 2005, 249, 329. (e) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253. (f) Borovik, A. S. Acc. Chem. Res. 2005, 38, 54. (g) Bakac, A. Coord. Chem. Rev. 2006, 250, 2046. (h) Krebs, C.; Fujimori, D. G.; Walsh, C. T.; Bollinger, J. M., Jr. Acc. Chem. Res. 2007, 40, 484. (i) Nam, W. Acc. Chem. Res. 2007, 40, 522. (j) Comba, P.; Kerscher, M.; Schiek, W. Prog. Inorg. Chem. 2007, 55, 613.

(3) (a) Arias, J.; Newlands, C. R.; Abu-Omar, M. M. Inorg. Chem.
2001, 40, 2185. (b) Fertinger, C.; Hessenauer-Ilicheva, N.; Franke, A.; van Eldik, R. Chem.—Eur. J. 2009, 15, 13435. (c) Arunkumar, C.; Lee, Y.-M.; Lee, J. Y.; Fukuzumi, S.; Nam, W. Chem.—Eur. J. 2009, 15, 11482. (d) Kumar, A.; Goldberg, I.; Botoshansky, M.; Buchman, Y.; Gross, Z. J. Am. Chem. Soc. 2010, 132, 15233. (e) Benet-Buchholz, J.; Comba, P.; Llobet, A.; Roeser, S.; Vadivelu, P.; Wiesner, S. Dalton Trans. 2010, 39, 3315.

(4) (a) Goto, Y.; Matsui, T.; Ozaki, S.; Watanabe, Y.; Fukuzumi, S. J. Am. Chem. Soc. **1999**, 121, 9497. (b) Baciocchi, E.; Gerini, M. F.; Lanzalunga, O.; Lapi, A.; Lo Piparo, M. G. Org. Biomol. Chem. **2003**, 1, 422.

(5) Khenkin, A. M.; Leitus, G.; Neumann, R. J. Am. Chem. Soc. 2010, 132, 11446.

(6) (a) Shaik, S.; Wang, Y.; Chen, H.; Song, J.; Meir, R. *Faraday Discuss.* **2010**, *145*, 49. (b) Porro, C. S.; Sutcliffe, M. J.; de Visser, S. P. J. Phys. Chem. A **2009**, *113*, 11635. (c) Kumar, D.; de Visser, S. P.; Sharma, P. K.; Hirao, H.; Shaik, S. *Biochemistry* **2005**, *44*, 8148. (d) Sharma, P. K.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. **2003**, *125*, 8698.

(7) Park, M. J.; Lee, J.; Suh, Y.; Kim, J.; Nam, W. J. Am. Chem. Soc. 2006, 128, 2630.

(8) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc. 2004, 126, 472.

(9) An acceleration effect of metal ions (including Sc³⁺) on OAT from high-valent manganese—oxo complexes to triphenylphosphine or olefins has been reported, although the acceleration mechanism has yet to be clarified. See: Miller, C. G.; Gordon-Wylie, S. W.; Horwitz, C. P.; Strazisar, S. A.; Peraino, D. K.; Clark, G. R.; Weintraub, S. T.; Collins, T. J. J. Am. Chem. Soc. **1998**, *120*, 11540.

(10) The products and product yields formed in the presence of Sc^{3+} were the same as those reported in the reactions carried out in the absence of Sc^{3+} (see ref 7 and the Experimental Section in the SI).

(11) Morimoto, M.; Kotani, H.; Park, J.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. **2011**, 133, 403.

(12) An X-ray crystal structure of a Sc^{3+} -bound iron(IV)—oxo complex has been reported. See: (a) Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-M.; Nam, W. *Nat. Chem.* **2010**, *2*, 756. (b) Karlin, K. D. *Nat. Chem.* **2010**, *2*, 711.

(13) For metal ion-coupled electron transfer, see: (a) Fukuzumi, S. *Prog. Inorg. Chem.* 2009, 56, 49. (b) Fukuzumi, S. *Bull. Chem. Soc. Jpn.* 1997, 70, 1. (c) Fukuzumi, S.; Ohkubo, K. *Coord. Chem. Rev.* 2010, 254, 372.

(14) Sc^{3+} ion is known to be most the effective for metal ion-coupled electron transfer. See: Fukuzumi, S.; Ohkubo, K. *Chem.—Eur. J.* **2000**, *6*, 4532.

(15) (a) Lee, Y.-M.; Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. **2008**, 130, 434. (b) Fukuzumi, S.; Kotani, H.; Suenobu, T.; Hong, S.; Lee, Y.-M.; Nam, W. Chem.—Eur. J. **2010**, 16, 354.

(16) (a) Marcus, R. A. Annu. Rev. Phys. Chem. **1964**, 15, 155. (b) Marcus, R. A. Angew. Chem., Int. Ed. Engl. **1993**, 32, 1111.

(17) The slightly smaller λ value for thioanisoles than that for metal complexes may be ascribed to the delocalization of the charge in the π -radical cations. See: Eberson, L. *Electron-Transfer Reactions in Organic Chemistry: Reactivity and Structure;* Springer: Berlin, 1987; Vol. 25.

(18) Yokoi, H.; Hatta, A.; Ishiguro, K.; Sawaki, Y. J. Am. Chem. Soc. **1998**, 120, 12728.